

www.colorado-hydrogen.org

Video Podcast

The Big Picture Cost of Hydrogen Sourcing and Transporting May 2024

To Replace Petroleum . . .

... we need to consider the numbers

- Target price for hydrogen to:
 - Replace gasoline & diesel for transportation
 - Same cost-per-mile for the user
 - To replace natural gas for industry & utilities
 - Same cost-per-BTU for the user
- Cost of the likely *Clean* sources
 - Electrolysis of water
 - Natural hydrogen wells
 - Underground hydrogen generation (ProtonTechnology <u>https://protonh2.com</u>)

A Cost – Price Analysis

Energy Definitions

- "Clean" Energy
 - Zero GHG (Greenhouse Gas)
 - No emissions
 - GHG neutral
 - Use may emit GHG
- All Renewable Energy is Clean Not all Clean Energy is Clean Gy is renewable Production absorbs an amount equal to emission
 - GHG negative
 - If the use of a fuel emits GHG
 - Production of that fuel removes more GHG from the atmosphere than emitted
- Renewable energy
 - Source is replenished by natural processes
 - Is not depleted

Energy Solutions Must Meet 3 Criteria

Why Hydrogen? To Replace Fossil Fuels We Need All The <u>Functions</u> That Fossil Fuels Provide

	_	y Energy e Carrier	Storability		Fast	Hi-Temp for	Long-Distance	High Energy
	Energy Source		Short Term	Long Term	Transfer to Vehicles	industry (Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х

To Replace Fossil Fuels We Need All The Functions That Fossil Fuels Provide

	_	Storability		Fast	Hi-Temp for	Long-Distance	High Energy	
	Energy Source	ce Carrier	Short Term	Long Term	Transfer to Vehicles	(Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х
Wind, Solar Geothermal	Х							

To Replace Fossil Fuels We Need All The Functions That Fossil Fuels Provide

			Storability		Fast	Hi-Temp for	Long-Distance	High Energy	
	Energy Source	Energy Carrier	Short Term	Long Term	Transfer to Vehicles	(Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)	
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х	
Wind, Solar Geothermal	Х								
Electric Grid		Х					Х		

To Replace Fossil Fuels We Need All The Functions That Fossil Fuels Provide

		Storability		Fast	Hi-Temp for	Long-Distance	High Energy	
	Energy Source	Energy Carrier	Short Term	Long Term	Transfer to Vehicles	(Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х
Wind, Solar Geothermal	Х							
Electric Grid		Х					Х	
Batteries		Х	Х					

Hydrogen Picks Up Where the Grid and Batteries Leave Off

	-		Stora		bility Fast		Hi-Temp for	Long-Distance	High Energy
	Energy Source	Energy Carrier	Short Term	Long Term	Transfer to Vehicles	(Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)	
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х	
Wind, Solar Geothermal	Х								
Electric Grid		Х					Х	(?)	
Batteries		Х	Х						
Hydrogen	Х	Х	Х	Х	Х	Х	Х		

- Geological hydrogen (wells)
- Underground Hydrogen Generation From Petroleum
- Hydrogen from Biomass

The Complete Energy Transition Picture

	Energy Energy Source Carrier	Francis Francis		Storability		Fast	Hi-Temp for	Long-Distance	High Energy
		Short Term	Long Term	Transfer to Vehicles	(Steel, Cement Glass making)	Energy Transport	Density (Ships & Planes)		
Fossil Fuels	Х	Х	Х	Х	Х	Х	Х	Х	
Wind & Solar	Х								
Electric Grid		Х					Х		
Batteries		Х	Х						
Hydrogen	Х	Х	Х	Х	Х	х	Х		
Biofuel	Х	Х	Х	Х	Х		Х	Х	

• "Clean" and "Renewable", but not zero emissions

• Uses the atmosphere to exchange CO₂ between use and source

Clean Hydrogen Sourcing

- Hydrogen needs to be *Clean* (zero greenhouse gases)
 - If it weren't for the need to eliminate greenhouse gases the world wouldn't bother using hydrogen
- Sources of *Clean* hydrogen
 - Electrolysis of water
 - Natural Hydrogen Wells
 - Generated Underground (GU) Hydrogen (Proton Technology* process)

*https://protonh2.com.

Gasoline & Diesel Replacement H₂ Price Target

- Goal: Price hydrogen at the same or better cost-per-mile as petroleum
 - To entice users to switch from petroleum to hydrogen vehicles
- Cost-per-mile is based on vehicle efficiency
 - Hydrogen vehicles are more efficient than petroleum . . . but that varies by Class
- Energy Economy Ratio (EER)
 - Ratio of MPKg-to-MPG
 - For similar size and weight vehicles

Class	LD/MD Gas	LD/MD Diesel	HD Diesel Local	HD Diesel Highway
Petrol. \$/gal	\$3.50	\$4.00	\$4.00	\$4.00
EER	2.5	1.9	1.5	1.1
Target Price \$/kg	\$8.75	\$7.60	\$6.00	\$4.40

Price Per kg is Highly Dependent on Vehicle Class and Comparison to Gasoline vs Diesel

50-mile delivery

LH₂ Delivered

LOHC Delivered

Ammonia Delivered

On-Site Electrolysis

50-mile delivery	CAPEX
LH ₂ Delivered	\$3.8 M
LOHC Delivered	\$4.3 M
Ammonia Delivered	\$7.0 M
On-Site Electrolysis	\$3.2 M

50-mile delivery	CAPEX	CAPEX debt service (\$/kg)
LH ₂ Delivered	\$3.8 M	\$2.40
LOHC Delivered	\$4.3 M	\$2.73
Ammonia Delivered	\$7.0 M	\$4.43
On-Site Electrolysis	\$3.2 M	\$4.23

50-mile delivery	САРЕХ	CAPEX debt service (\$/kg)	OPEX (\$/kg)
LH ₂ Delivered	\$3.8 M	\$2.40	\$2.04
LOHC Delivered	\$4.3 M	\$2.73	\$3.13
Ammonia Delivered	\$7.0 M	\$4.43	\$2.78
On-Site Electrolysis	\$3.2 M	\$4.23	\$4.52

50-mile delivery	CAPEX	CAPEX debt service (\$/kg)	OPEX (\$/kg)	Transport Cost
LH ₂ Delivered	\$3.8 M	\$2.40	\$2.04	\$4.44
LOHC Delivered	\$4.3 M	\$2.73	\$3.13	\$5.87
Ammonia Delivered	\$7.0 M	\$4.43	\$2.78	\$7.21
On-Site Electrolysis	\$3.2 M	\$4.23	\$4.52	

50-mile delivery	CAPEX	CAPEX debt service (\$/kg)	OPEX (\$/kg)	Transport Cost	H2 Cost at well
LH ₂ Delivered	\$3.8 M	\$2.40	\$2.04	\$4.44	\$0.30
LOHC Delivered	\$4.3 M	\$2.73	\$3.13	\$5.87	\$0.30
Ammonia Delivered	\$7.0 M	\$4.43	\$2.78	\$7.21	\$0.30
On-Site Electrolysis	\$3.2 M	\$4.23	\$4.52		

50-mile delivery	САРЕХ	CAPEX debt service (\$/kg)	OPEX (\$/kg)	Transport Cost	H2 Cost at well	Total Cost (\$/kg)
LH ₂ Delivered	\$3.8 M	\$2.40	\$2.04	\$4.44	\$0.30	\$4.74
LOHC Delivered	\$4.3 M	\$2.73	\$3.13	\$5.87	\$0.30	\$6.17
Ammonia Delivered	\$7.0 M	\$4.43	\$2.78	\$7.21	\$0.30	\$7.51
On-Site Electrolysis	\$3.2 M	\$4.23	\$4.52			\$8.75

Price-Cost Comparison

						Hydrogen Target Price					
								Class	LD/MD Gas	LD/MD Diesel	HD Diesel
							Petro	I. \$/gal	\$3.50	\$4.00	\$4.00
							E	ER	2.5	1.9	1.1
							Target F	rice \$/kg	\$8.75	\$7.60	\$4.40
Cost for Transport and Generation							Targ	<mark>et Price (\$</mark>	/kg)		
	Transport	Transport	Transport				(- Drice	√ = Price ≥ Cost		LD/MD	HD
	CAPEX debt	ΟΡΕΧ	Total	H ₂ Cost	Total Cost		$\sqrt{-}$ FIIC			Diesel	Diesel
50-mile delivery	service (\$/kg)	(\$/kg)	Cost	at well	(\$/kg)				\$8.75	\$7.60	\$4.40
LH ₂ Delivered	\$2.40	\$2.04	\$4.44	\$0.30	\$4.74	101	LH ₂	\$4.74	\checkmark	\checkmark	(√)
LOHC Delivered	\$2.73	\$3.13	\$5.87	\$0.30	\$6.17		LOHC	\$6.17	\checkmark	\checkmark	
Ammonia Delivered	\$4.43	\$2.78	\$7.21	\$0.30	\$7.51	7 1	Ammonia	\$7.51	\checkmark	\checkmark	
On-Site Electrolysis	\$4.23	\$4.52			\$8.75		Electrolysis	\$8.75	\checkmark		

Although Hydrogen for Heavy-Duty Transportation is a Compelling Idea A Competitive Source for the Hydrogen is Challenging

Price Targe	et			
Item	Value (at H ₂ Source)			
CH ₄ cost per 1,000 SCF	\$9.60	Cost Analysis		
BTU per 1,000 SCF	922,740	Item	\$ per kg	
BTU per kg H ₂ (LHV)	114,887	Hydrogen Cost at source	\$0.30	
kg H_2 equiv. to 1,000 SCF CH_4	8.03	Pipeline cost OPEX + ROI	\$0.20 to \$0.80	
Price per kg H ₂ equiv. to CH ₄	\$1.20	Total cost per kg	\$0.50 to \$1.10	

Cost less than target price

Hydrogen Can Compete With Natural Gas if the Source is Priced at 30¢ to 40¢ per kg

Take-Aways

Hydrogen can compete with petroleum for transportation

- On-site electrolysis is competitive with light-duty gasoline
- For other classes of vehicles
 - Sources of 30¢ per kg hydrogen is needed
 - Natural hydrogen wells
 - Generated Underground (GU) Hydrogen using petroleum reservoirs
 - Liquid hydrogen transport is the lowest cost

Hydrogen can compete with Nat. Gas for industry & utilities

- Pipelines will be needed
 - Quantities too great for tanker transport
 - With a hydrogen source cost of 30¢ per kg (wells and generation underground)
 - And 20¢ to 80¢ per kg pipeline cost

Zero GHG Hydrogen From Petroleum Wells

- 1. Oxygen is injected into wells to free the hydrogen
 - "Fire Flood" effect
- 2. Hydrogen is released underground
- 3. Pure Hydrogen is brought out of the well through a palladium filter
- Works well with abandoned, spent wells
- Additionally, this process can sequester 3 times the CO_2 as hydrogen generated

Petroleum Wells in Colorado

- Red are active
- Blue are abandoned
- Colorado has over 20,000 abandoned wells
- Many of the abandoned wells can be used to produce hydrogen

www.colorado-hydrogen.org

HydrogenNowCast

Podcast

On-Site H2 Generation 210 kg/day

On-site Hydrogen Fuel Station Footprints

Up to 420 kg per day

Moving Hydrogen as a Liquid

Moving Hydrogen as a Liquid – Self Pressurizing

Moving Hydrogen as Ammonia

Moving Hydrogen Using Liquid Organic Hydrogen Carrier (LOHC)

