

Understanding Electric Vehicles

Part of the Hydrogen Tech Brief Series

The Problem

- Halting global warming caused by CO₂ and other Green House Gases
 - All energy sectors must transition from fossil fuels to renewable energy
- The transportation sector needs a form of renewable energy that is
 - Energy dense
 - Quickly transferred to vehicle

US CO₂ Emissions by Sector - 2019

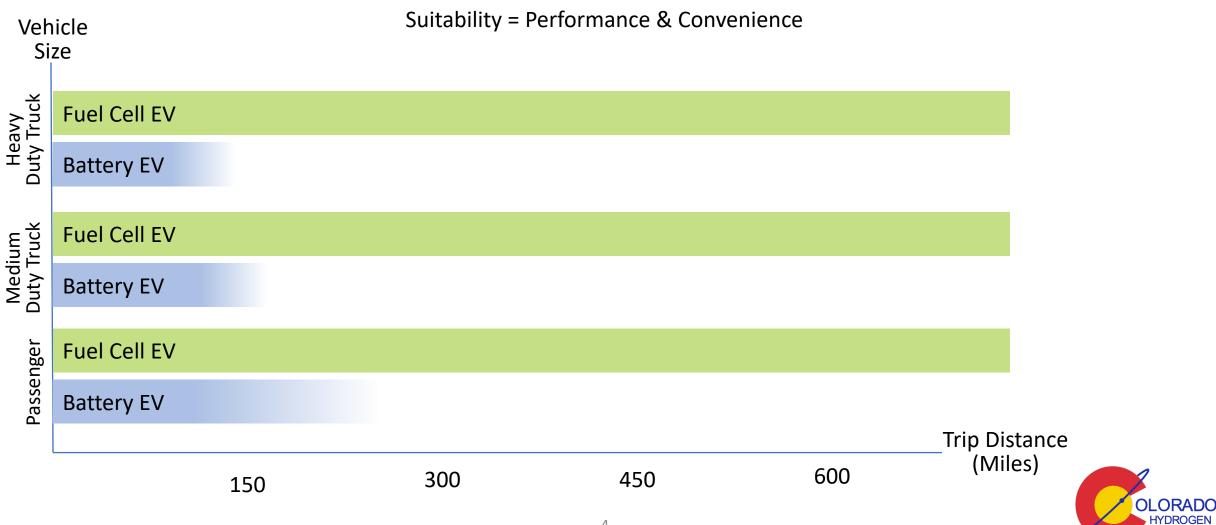
The Solution

- Two types of Electric Vehicles (EV's)
 - Battery EV's Get their energy by charging
 - Fuel Cell EV's Get their energy from hydrogen

	Batteries	Hydrogen	Impact
Energy Density	Low	High	Range & Travel Time
Speed of refueling	Slow	Fast	Travel Time

- In order to entice *all* drivers to switch to renewable energy
 - Vehicles need to offer the same *performance* and *convenience* as petroleum
 - Fuel Cell EV's provide the same user experience as gas & diesel:
 - ✓ 3-Minute Refueling
 - ✓ Range Undiminished by Cold Weather

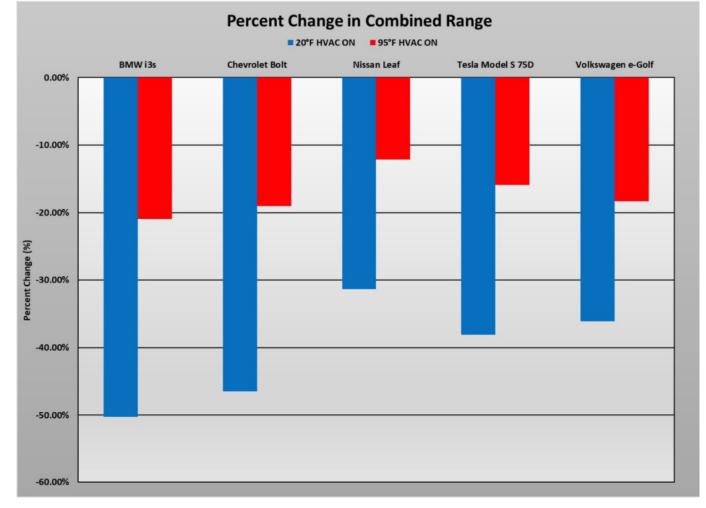
✓ Light, Compact, Abundant Energy for Trucks & RV's
 ✓ Full Driving Range with Heavy Loads and Towing



The Customer's Perspective – Comparing Options

Characteristic	Battery EV	Petroleum Vehicles	Fuel Cell EV	
Fuel cost per mile	3.5¢ (warm weather) 5.8¢ (cold weather)	11¢	11¢	Sweet Spot for Battery EV's
Fueling Time Long Trips (450 mile example)	1 hour (2 stops, 30 minutes)	3 minutes	3 minutes	
Refueling Temperature	Charge only when battery above 32° F	Any Temperature	Any Temperature	
Range at Hot and Cold	Reduced 20% to 50%	Unaffected	Slight effect	Sweet Spot for Fuel Cell EV's
Suitability for Large SUV Trucks and RV's	Battery weight, bulk & cost become limiting	Unlimited	Unlimited	Fuel Cell EV S
Impact of Towing	Decreased Range	Decreased Mileage	Decreased Mileage	
Fueling / Recharging	Charge at home or public chargers	Gas stations	Hydrogen Fuel Stations	

OLORADO HYDROGEN NETWORK


Suitability for EV Type by Range

NETWORK

Battery Temperature Performance

Change Relative to 75° F

Source: American Automobile Association https://www.colorado.aaa.com/news/study-icy-temps-kill-electric-vehicle-range

Two Reasons

- 1. Battery output less at cold
- 2. Power-hungry Heater & A/C

Refueling Comparison

	Charging	Hydrogen
Refuel Time	 40 minutes per 300 miles Frequent fast-charging harms the battery	3 minutes per 400 miles
Availability	Charge at home butIssues for apartments & low-income	 Need build-out of stations but Stations can service hundreds of cars per day
Useable Life	Battery lasts half the life of the vehicleReplacement expensive	Fuel Cell lasts the life of the vehicle
Zero Carbon?	Until grid is 100% renewable, not all vehicles will be charging with green power	H2 fuel stations can use 100% green power today via agreements with the utilities
In the Long Term	 Inability of the grid to supply wide-spread fast-charging Problematic getting power for fast- charging to small towns and rural sites 	 On-site electrolysis plus H2 delivery: Delivery of hydrogen relieves the grid Delivery suitable for small towns or rural stations

Take-Away

- To limit climate change, we need to entice ALL users to switch to electric vehicles
 - Therefore we need vehicles that satisfy ALL use cases
 - Fuel Cell EV's for large vehicles, longer trips, cargo capacity, cold weather
 - Battery EV's for light vehicles and around-town trips
- Charge time for Battery EV's will never be as fast as fueling
 - Limited by the amount of power that can safely be applied to the vehicle

